Spatial and energy distribution of topological edge states in single Bi(111) bilayer.
نویسندگان
چکیده
By combining scanning tunneling microscopy and spectroscopy, angle-resolved photoemission spectroscopy, and density functional theory band calculations, we directly observe and resolve the one-dimensional edge states of single bilayer (BL) Bi(111) islands on clean Bi(2)Te(3) and Bi(111)-covered Bi(2)Te(3) substrates. The edge states are localized in the vicinity of step edges having an ∼2 nm wide spatial distribution in real space and reside in the energy gap of the Bi(111) BL. Our results demonstrate the existence of nontrivial topological edge states of single Bi(111) bilayer as a two-dimensional topological insulator.
منابع مشابه
Tuning topological edge states of Bi(111) bilayer film by edge adsorption.
Based on first-principles and tight-binding calculations, we report that the topological edge states of zigzag Bi(111) nanoribbon can be significantly tuned by H edge adsorption. The Fermi velocity is increased by 1 order of magnitude, as the Dirac point is moved from the Brillouin zone boundary to the Brillouin zone center, and the real-space distribution of Dirac states are made twice more de...
متن کاملEngineering Electronic Structure of a Two-Dimensional Topological Insulator Bi(111) Bilayer on Sb Nanofilms by Quantum Confinement Effect.
We report on the fabrication of a two-dimensional topological insulator Bi(111) bilayer on Sb nanofilms via a sequential molecular beam epitaxy growth technique. Our angle-resolved photoemission measurements demonstrate the evolution of the electronic band structure of the heterostructure as a function of the film thickness and reveal the existence of a two-dimensional spinful massless electron...
متن کاملInterfacing 2D and 3D topological insulators: Bi(111) bilayer on Bi2Te3.
We report the formation of a bilayer Bi(111) ultrathin film, which is theoretically predicted to be in a two-dimensional quantum spin Hall state, on a Bi(2)Te(3) substrate. From angle-resolved photoemission spectroscopy measurements and ab initio calculations, the electronic structure of the system can be understood as an overlap of the band dispersions of bilayer Bi and Bi(2)Te(3). Our results...
متن کاملQuasiparticle dynamics in reshaped helical Dirac cone of topological insulators.
Topological insulators and graphene present two unique classes of materials, which are characterized by spin-polarized (helical) and nonpolarized Dirac cone band structures, respectively. The importance of many-body interactions that renormalize the linear bands near Dirac point in graphene has been well recognized and attracted much recent attention. However, renormalization of the helical Dir...
متن کاملSpin rectification by orbital polarization in Bi-bilayer nanoribbons.
We investigate the edge states of quantum spin-Hall phase Bi(111) bilayer nano-ribbons (BNRs) and their spin-rectifying effect using first-principles calculations and a non-equilibrium transport method. As low-dimensional materials, BNRs have tunable electronic properties, which are not only dependent on the edge shape, chemical passivation, or external electric fields but also governed by geom...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 109 1 شماره
صفحات -
تاریخ انتشار 2012